skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of Canberra's Tomographic Gamma-Ray Can Scanner ('Can-TGS') - 13311

Conference ·
OSTI ID:22225043
; ; ; ; ; ; ;  [1]
  1. Canberra Industries, 800 Research Parkway, Meriden, CT 06450 (United States)

The Tomographic Gamma-ray Scanner (TGS) for large volume drummed waste has been successfully commercialized by Canberra over the last several years. As part of an R and D effort to continually improve this technology, we have developed a scaled down version of the standard commercial product (Can-TGS). The Can-TGS is able to accommodate cans and pails of various sizes, ranging from sub-liter to 20 liter volumes with densities of up to 4 g/cc. The Can-TGS has three diamond-shaped collimators (6.35 mm [0.25''], 12.7 mm [0.5''], and 25.4 mm [1'']) to facilitate a range of container volumes and heights. As with the standard TGS, the Can-TGS has a transmission source sub-system, where the transmission source can be easily swapped between sources of various strengths and type. The acquisition portion of the Can-TGS is powered by the Canberra Lynx{sup R} MCA which accommodates both multi-spectral scaling (MSS) and list-mode. Recently, the Can-TGS has been successfully characterized for an 18.93 L [5-gallon] container for the 25.4 mm diamond-shaped collimator. In principle, a single measurement (with good statistics) is required for each configuration in order to characterize the system. However, for this study, measurements were performed for several different matrices. For each matrix used, 6 different measurements were acquired. For each of these measurements, the drum was rotated 60 deg. with respect to the previous starting position. This procedure was followed in order to average out any radial bias that might be produced from just a single measurement. A description of the Can-TGS system is given. The details of the recent characterization measurements and the associated data analysis and results are presented. TGS results are compared with Segmented Gamma Scanner (SGS) results for the same source configuration. Additionally, the future outlook for Canberra's R and D efforts with this system is discussed. These efforts include TGS algorithm optimization, improving our understanding of the uncertainties associated with TGS results, and the overall benefits and limitations of this technology as compared to other available non-destructive assay techniques. (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI ID:
22225043
Report Number(s):
INIS-US-13-WM-13311; TRN: US14V0497045998
Resource Relation:
Conference: WM2013: Waste Management Conference: International collaboration and continuous improvement, Phoenix, AZ (United States), 24-28 Feb 2013; Other Information: Country of input: France; 8 refs.
Country of Publication:
United States
Language:
English