skip to main content

SciTech ConnectSciTech Connect

Title: Optimal guidance law in quantum mechanics

Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wavemore » is shown to be a wavefunction solved from Schrödinger equation.« less
Authors:
;
Publication Date:
OSTI Identifier:
22224232
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics (New York); Journal Volume: 338; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CONTROL; DESIGN; DYNAMIC PROGRAMMING; EARTH PLANET; ELECTRONS; GLOBAL ASPECTS; MATHEMATICAL SOLUTIONS; PROBABILITY DENSITY FUNCTIONS; QUANTUM MECHANICS; QUANTUM OPERATORS; SCHROEDINGER EQUATION; STOCHASTIC PROCESSES; WAVE FUNCTIONS