skip to main content

SciTech ConnectSciTech Connect

Title: Dynamical model for longitudinal wave functions in light-front holographic QCD

We construct a Schrödinger-like equation for the longitudinal wave function of a meson in the valence qq{sup -bar} sector, based on the ’t Hooft model for large-N two-dimensional QCD, and combine this with the usual transverse equation from light-front holographic QCD, to obtain a model for mesons with massive quarks. The computed wave functions are compared with the wave function ansatz of Brodsky and de Téramond and used to compute decay constants and parton distribution functions. The basis functions used to solve the longitudinal equation may be useful for more general calculations of meson states in QCD. -- Highlights: •Provide relativistic quark model based on light-front holographic QCD. •Incorporate dependence on quark mass. •Consistent with the Brodsky–de Téramond quark-wave-function ansatz. •Compute meson decay constants and parton distribution functions. •Illustrate use of basis functions that could be convenient for more general numerical calculations in light-front QCD.
Authors:
;
Publication Date:
OSTI Identifier:
22224217
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics (New York); Journal Volume: 337; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; DISTRIBUTION FUNCTIONS; EQUATIONS; MESONS; QUANTUM CHROMODYNAMICS; QUARK MODEL; QUARKS; RELATIVISTIC RANGE; WAVE FUNCTIONS