skip to main content

Title: Nonlinear dust acoustic waves in inhomogeneous four-component dusty plasma with opposite charge polarity dust grains

The reductive perturbation technique is employed to investigate the propagation properties of nonlinear dust acoustic (DA) waves in a four-component inhomogeneous dusty plasma (4CIDP). The 4CIDP consists of both positive- and negative-charge dust grains, characterized by different mass, temperature, and density, in addition to a background of Maxwellian electrons and ions. The inhomogeneity caused by nonuniform equilibrium values of particle densities, fluid velocities, and electrostatic potential leads to a significant modification to the nature of nonlinear DA solitary waves. It is found that this model reveals two DA wave velocities, one slow, λ{sub s}, and the other is fast, λ{sub f}. The nonlinear wave evolution is governed by a modified Kortweg-de Vries equation, whose coefficients are space dependent. Both the two soliton types; compressive and rarefactive are allowed corresponding to λ{sub s}. However, only compressive soliton is created corresponding to λ{sub f}. The numerical investigations illustrate the dependence of the soliton amplitude, width, and velocity on the plasma inhomogeneities in each case. The relevance of these theoretical results with 4CIDPs observed in a multi-component plasma configurations in the polar mesosphere is discussed.
Authors:
 [1]
  1. Department of Physics, Faculty of Science, Damietta University, New Damietta P. O. 34517 (Egypt)
Publication Date:
OSTI Identifier:
22220643
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 20; Journal Issue: 9; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DENSITY; DUSTS; ELECTRONS; ION ACOUSTIC WAVES; KORTEWEG-DE VRIES EQUATION; MESOSPHERE; NONLINEAR PROBLEMS; SOLITONS; SOUND WAVES