skip to main content

Title: Envelope excitations in electronegative plasmas with electrons featuring the Tsallis distribution

We examine the modulational instability (MI) of ion-acoustic waves (IAWs) in an electronegative plasma containing positive and negative ions as well as electrons that follow the nonextensive statistics proposed by Tsallis [J. Stat. Phys. 52, 479 (1988)]. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the modulational instability of the IAWs is obtained. Inspired by the experimental work of Ichiki et al.[Phys. Plasmas 8, 4275 (2001)], three types of electronegative plasmas are investigated. The effects of various parameters on the propagation of IAWs are discussed in detail numerically. We find that the plasma supports both bright and dark solutions. The presence of the non-extensively distributed electrons is found to play a crucial role in the formation of envelope excitations. The region in the parameter space where the MI exists depends sensitively on the positive to negative ion mass ratio (M) and negative to positive ion density ratio (ν). An extensive range of the nonextensive q-parameters (−1
Authors:
;  [1] ;  [2]
  1. Institute of Space Sciences, Shandong University at Weihai, Weihai 264209 (China)
  2. Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El Alia, Algiers 16111 (Algeria)
Publication Date:
OSTI Identifier:
22220586
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 20; Journal Issue: 9; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANIONS; CATIONS; ELECTRONS; EXCITATION; INSTABILITY; ION ACOUSTIC WAVES; NONLINEAR PROBLEMS; PERTURBATION THEORY; SCHROEDINGER EQUATION; SOLITONS; WAVE PROPAGATION