skip to main content

SciTech ConnectSciTech Connect

Title: Transition of electron kinetics in weakly magnetized inductively coupled plasmas

Transition of the electron kinetics from nonlocal to local regime was studied in weakly magnetized solenoidal inductively coupled plasma from the measurement of the electron energy probability function (EEPF). Without DC magnetic field, the discharge property was governed by nonlocal electron kinetics at low gas pressure. The electron temperatures were almost same in radial position, and the EEPFs in total electron energy scale were radially coincided. However, when the DC magnetic field was applied, radial non-coincidence of the EEPFs in total electron energy scale was observed. The electrons were cooled at the discharge center where the electron heating is absent, while the electron temperature was rarely changed at the discharge boundary with the magnetic field. These changes show the transition from nonlocal to local electron kinetics and the transition is occurred when the electron gyration diameter was smaller than the skin depth. The nonlocal to local transition point almost coincided with the calculation results by using nonlocal parameter and collision parameter.
Authors:
; ; ;  [1] ;  [2]
  1. Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)
  2. Department of Nanoscale Semiconductor Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22218490
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 20; Journal Issue: 10; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ELECTRIC DISCHARGES; ELECTRON COLLISIONS; ELECTRON TEMPERATURE; ELECTRONS; ION TEMPERATURE; KINETICS; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; PLASMA DIAGNOSTICS; PLASMA HEATING; PLASMA PRESSURE; PROBABILITY