skip to main content

Title: Cascaded target normal sheath acceleration

A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.
Authors:
; ; ; ; ; ; ; ; ; ; ;  [1]
  1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)
Publication Date:
OSTI Identifier:
22218444
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 20; Journal Issue: 11; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 43 PARTICLE ACCELERATORS; ACCELERATION; BEAM PRODUCTION; LASERS; LIGHT TRANSMISSION; MEV RANGE; PLASMA GUNS; PLASMA PRODUCTION; PLASMA SHEATH; PLASMA SIMULATION; PROTON BEAMS; PROTONS; TWO-DIMENSIONAL CALCULATIONS