skip to main content

Title: Self/anti-self charge conjugate states in the helicity basis

We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. Particular attention has been paid to the question of (anti)commutation of the Charge conjugation operator and the Parity in the helicity basis. Dynamical equations have also been presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The chirality and the helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states have been discussed.
Authors:
 [1]
  1. UAF, Universidad de Zacatecas (Mexico)
Publication Date:
OSTI Identifier:
22218292
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1548; Journal Issue: 1; Conference: 9. Mexican school on gravitation and mathematical physics: Cosmology for the 21. century, Puerto Vallarta, Jalisco (Mexico), 3-7 Dec 2012; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; C INVARIANCE; CHIRALITY; DIRAC EQUATION; FIELD OPERATORS; HELICITY; LORENTZ GROUPS; LORENTZ INVARIANCE; MARKOV PROCESS; P INVARIANCE; PARITY; QUANTUM FIELD THEORY; SPIN; T INVARIANCE