skip to main content

Title: Lévy flights and nonlocal quantum dynamics

We develop a fully fledged theory of quantum dynamical patterns of behavior that are nonlocally induced. To this end we generalize the standard Laplacian-based framework of the Schrödinger picture quantum evolution to that employing nonlocal (pseudodifferential) operators. Special attention is paid to the Salpeter (here, m⩾ 0) quasirelativistic equation and the evolution of various wave packets, in particular to their radial expansion in 3D. Foldy's synthesis of “covariant particle equations” is extended to encompass free Maxwell theory, which however is devoid of any “particle” content. Links with the photon wave mechanics are explored.
Authors:
;  [1]
  1. Institute of Physics, University of Opole, 45-052 Opole (Poland)
Publication Date:
OSTI Identifier:
22218264
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 54; Journal Issue: 7; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EVOLUTION; LAPLACIAN; MAXWELL EQUATIONS; PHOTONS; RANDOMNESS; SCHROEDINGER EQUATION