skip to main content

Title: Quantum resistance standard accuracy close to the zero-dissipation state

We report on a comparison of four GaAs/AlGaAs-based quantum resistance standards using an original technique adapted from the well-known Wheatstone bridge. This work shows that the quantized Hall resistance at Landau level filling factor ν=2 can be reproducible with a relative uncertainty of 32×10{sup −12} in the dissipationless limit of the quantum Hall effect regime. In the presence of a very small dissipation characterized by a mean macroscopic longitudinal resistivity R{sub xx}(B) of a few μΩ, the discrepancy ΔR{sub H}(B) between quantum Hall resistors measured on the Hall plateau at magnetic induction B turns out to follow the so-called resistivity rule R{sub xx}(B)=αB×d(ΔR{sub H}(B))/dB. While the dissipation increases with the measurement current value, the coefficient α stays constant in the range investigated (40−120 μA). This result enlightens the impact of the dissipation emergence in the two-dimensional electron gas on the Hall resistance quantization, which is of major interest for the resistance metrology. The quantum Hall effect is used to realize a universal resistance standard only linked to the electron charge e and the Planck constant h and it is known to play a central role in the upcoming revised Système International of units. There are therefore fundamental and practical benefitsmore » in testing the reproducibility property of the quantum Hall effect with better and better accuracy.« less
Authors:
;  [1]
  1. Laboratoire National de métrologie et d'Essais (LNE), 29 avenue Roger Hennequin, 78197 Trappes (France)
Publication Date:
OSTI Identifier:
22218241
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 6; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ACCURACY; ALUMINIUM ARSENIDES; COMPARATIVE EVALUATIONS; ELECTRIC CURRENTS; ELECTRON GAS; ELECTRONS; GALLIUM ARSENIDES; HALL EFFECT; QUANTIZATION; RESISTORS; SEMICONDUCTOR MATERIALS; TWO-DIMENSIONAL CALCULATIONS