skip to main content

Title: The role of plasma evolution and photon transport in optimizing future advanced lithography sources

Laser produced plasma (LPP) sources for extreme ultraviolet (EUV) photons are currently based on using small liquid tin droplets as target that has many advantages including generation of stable continuous targets at high repetition rate, larger photons collection angle, and reduced contamination and damage to the optical mirror collection system from plasma debris and energetic particles. The ideal target is to generate a source of maximum EUV radiation output and collection in the 13.5 nm range with minimum atomic debris. Based on recent experimental results and our modeling predictions, the smallest efficient droplets are of diameters in the range of 20–30 μm in LPP devices with dual-beam technique. Such devices can produce EUV sources with conversion efficiency around 3% and with collected EUV power of 190 W or more that can satisfy current requirements for high volume manufacturing. One of the most important characteristics of these devices is in the low amount of atomic debris produced due to the small initial mass of droplets and the significant vaporization rate during the pre-pulse stage. In this study, we analyzed in detail plasma evolution processes in LPP systems using small spherical tin targets to predict the optimum droplet size yielding maximum EUVmore » output. We identified several important processes during laser-plasma interaction that can affect conditions for optimum EUV photons generation and collection. The importance and accurate description of modeling these physical processes increase with the decrease in target size and its simulation domain.« less
Authors:
;  [1]
  1. Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)
Publication Date:
OSTI Identifier:
22218089
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 8; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; DROPLETS; EQUIPMENT; EVAPORATION; EVOLUTION; EXTREME ULTRAVIOLET RADIATION; LASER-PRODUCED PLASMA; LASERS; LIQUIDS; PHOTON TRANSPORT; PLASMA PRODUCTION; SIMULATION; TIN