skip to main content

Title: Huygens' principle for the Klein-Gordon equation in the de Sitter spacetime

In this article we prove that the Klein-Gordon equation in the de Sitter spacetime obeys the Huygens' principle only if the physical mass m of the scalar field and the dimension n⩾ 2 of the spatial variable are tied by the equation m{sup 2}= (n{sup 2}−1)/4. Moreover, we define the incomplete Huygens' principle, which is the Huygens' principle restricted to the vanishing second initial datum, and then reveals that the massless scalar field in the de Sitter spacetime obeys the incomplete Huygens' principle and does not obey the Huygens' principle, for the dimensions n= 1, 3, only. Thus, in the de Sitter spacetime the existence of two different scalar fields (in fact, with m= 0 and m{sup 2}= (n{sup 2}−1)/4), which obey incomplete Huygens' principle, is equivalent to the condition n= 3, the spatial dimension of the physical world. In fact, Paul Ehrenfest in 1917 addressed the question: “Why has our space just three dimensions?”. For n= 3 these two values of the mass are the endpoints of the so-called in quantum field theory the Higuchi bound. The value m{sup 2}= (n{sup 2}−1)/4 of the physical mass allows us also to obtain complete asymptotic expansion of the solution for themore » large time.« less
Authors:
 [1]
  1. Department of Mathematics, University of Texas-Pan American, 1201 W. University Drive, Edinburg, Texas 78539 (United States)
Publication Date:
OSTI Identifier:
22217987
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 54; Journal Issue: 9; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ASYMPTOTIC SOLUTIONS; HUYGENS PRINCIPLE; KLEIN-GORDON EQUATION; MASS; NONLINEAR PROBLEMS; QUANTUM FIELD THEORY; SCALAR FIELDS; SPACE-TIME