skip to main content

Title: Comprehensive study of the influence of different environments on degradation processes in F8BT: Correlating optoelectronic properties with Raman measurements

There is a growing interest in conjugated polymers from both industrial and academic points of views. The reasons are their tunable optoelectronic properties, ease of production, and excellent mechanical properties. However, the ease with which their optoelectronic properties are tunable make devices based on them prone to fast degradation and therefore, short life time. The issue of degradation of organic based optoelectronic devices is the topic of many ongoing researches. However, much less attention is given to degradation processes of the individual components of the devices and their dependence on the environmental conditions. In this work, we report on the degradation of a film of a polyfluorene block copolymer F8BT that is used in a variety of optoelectronic devices under different environments: Sun exposure, heating, and UV exposure in inert and ambient conditions. Degradation was observed in most of the optoelectronic properties of the film. Topographic measurements did not show observable changes of the film morphology following degradation. However, Raman spectroscopy measurements show changes that indicate degradation in one of the building blocks of the copolymer that is associated with electron's conduction. The absolute value of the correlation coefficient between the decrease in the Raman signal and the decrease inmore » the optoelectronic properties is larger than 0.95 under sun exposure it is larger than 0.8 under all other ambient exposures and smaller than 0.65 under inert conditions. These results support the assumption that Oxygen, not necessarily through photo-oxidation, and also water play an important role in the degradation process and indicate the part of the polymer that is most susceptible to degradation.« less
Authors:
;  [1]
  1. Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 84015 (Israel)
Publication Date:
OSTI Identifier:
22217883
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 16; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 74 ATOMIC AND MOLECULAR PHYSICS; COPOLYMERS; CORRELATIONS; ELECTRIC CONDUCTIVITY; FILMS; HEATING; MECHANICAL PROPERTIES; MORPHOLOGY; OXIDATION; OXYGEN; PHOTOLYSIS; RAMAN SPECTRA; RAMAN SPECTROSCOPY; SIGNALS; SUN