skip to main content

SciTech ConnectSciTech Connect

Title: Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition

In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to joinmore » the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.« less
Authors:
 [1] ;  [2] ; ;  [1] ;  [3] ;  [1] ;  [2]
  1. Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)
  2. (Korea, Republic of)
  3. Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22217857
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 17; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALUMINIUM OXIDES; DEPOSITION; DEPOSITS; INDIUM IONS; MOISTURE; PLASMA DIAGNOSTICS; RADIOWAVE RADIATION; STOICHIOMETRY; THIN FILMS; WATER VAPOR