skip to main content

Title: Laser-induced breakdown and damage generation by nonlinear frequency conversion in ferroelectric crystals: Experiment and theory

Using our experimental data for ns pulsed second harmonic generation (SHG) by periodically poled stoichiometric LiTaO{sub 3} (PPSLT) crystals, we consider in detail the mechanism underlying laser-induced damage in ferroelectric crystals. This mechanism involves generation and heating of free electrons, providing an effective kinetic pathway for electric breakdown and crystal damage in ns pulsed operation via combined two-photon absorption (TPA) and induced pyroelectric field. In particular, a temperature increase in the lattice of ≈1 K induced initially by ns SHG and TPA at the rear of operating PPSLT crystal is found to induce a gradient of spontaneous polarization generating a pyroelectric field of ≈10 kV/cm, accelerating free electrons generated by TPA to an energy of ≈10 eV, followed by impact ionization and crystal damage. Under the damage threshold for ns operation, the impact ionization does not lead to the avalanche-like increase of free electron density, in contrast to the case of shorter ps and fs pulses. However, the total number of collisions by free electrons, ≈10{sup 18} cm{sup −3} (generated during the pulse and accelerated to the energy of ≈10 eV), can produce widespread structural defects, which by entrapping electrons dramatically increase linear absorption for both harmonics in subsequent pulses,more » creating a positive feedback for crystal lattice heating, pyroelectric field and crystal damage. Under pulse repetition, defect generation starting from the rear of the crystal can propagate towards its center and front side producing damage tracks along the laser beam and stopping SHG. Theoretical analysis leads to numerical estimates and analytical approximation for the threshold laser fluence for onset of this damage mechanism, which agree well with our (i) experiments for the input 1064 nm radiation in 6.8 kHz pulsed SHG by PPSLT crystal, (ii) pulsed low frequency 532 nm radiation transmission experiments, and also (iii) with the data published for other nonlinear crystals and operated wavelengths.« less
Authors:
; ;  [1] ; ;  [2]
  1. Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
  2. National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)
Publication Date:
OSTI Identifier:
22217840
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 20; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION; BREAKDOWN; CRYSTAL LATTICES; CRYSTALS; DAMAGE; ELECTRONS; EV RANGE; FERROELECTRIC MATERIALS; HARMONIC GENERATION; IONIZATION; KHZ RANGE; LASERS; LITHIUM COMPOUNDS; NONLINEAR PROBLEMS; POLARIZATION; PULSES