skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [1];  [2];  [3];  [4]
  1. Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China)
  2. Department of General Education, Chang Gung University of Science and Technology, CGUST, Taiwan (China)
  3. Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Center, Chiayi, Taiwan (China)
  4. Institute of Basic Medicine Science, Department of Cell Biology and Anatomy and Pathology, National Cheng Kung University, Tainan, Taiwan (China)

CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

OSTI ID:
22215883
Journal Information:
Toxicology and Applied Pharmacology, Vol. 263, Issue 1; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English