skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microwave-assisted synthesis and characterization of hierarchically structured calcium fluoride

Journal Article · · Materials Research Bulletin
 [1];  [1]; ; ; ;  [1]
  1. School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000 (China)

Graphical abstract: CaF{sub 2} with different morphologies and hierarchical structure such as dendrites, spherical and cube was prepared under microwave-assisted condition by a simple solvothermal synthesis route using CaCl{sub 2} and [BMIM]BF{sub 4} as initial reagents, respectively. It was found that the species of precursor was of vital importance for the formation of CaF{sub 2} crystals. That is, precursors itself also acted as structure directing agent. The outstanding features of the approach to obtain hierarchical structure CaF{sub 2} were its simplicity, effectiveness and ease of assembly. On the basis of the experimental results, a possible growth mechanism of the CaF{sub 2} crystals was proposed. Display Omitted Highlights: ► CaF{sub 2} with hierarchical structure was synthesized under microwave-assisted conditions. ► Characteristic morphologies with cube, dendrite, hierarchical sphere, etc. were observed. ► Thin cubes assembled into a spherical structure. ► Ionic liquid of [BMIM]BF{sub 4} was fluorine source. ► Possible growth mechanisms of CaF{sub 2} crystals were discussed. -- Abstract: CaF{sub 2} with different morphologies and hierarchical structures was prepared under microwave-assisted condition by a simple hydrothermal route using CaCl{sub 2} and ionic liquid [BMIM]BF{sub 4} as initial reagents, respectively. It was found that both the precursor and pH values played an important role in the formation of CaF{sub 2} crystals with different morphologies. The results suggested that the CaF{sub 2} with cube and spherical structures was obtained at different pH values (4, 8, 11), while the CaF{sub 2} with dendrite shape was formed through an oriented self-assembly growth using (NH{sub 4}){sub 2}HPO{sub 4} as a structure directing agent. Scanning electron microscope observation showed that the as-prepared CaF{sub 2} was of three-dimensional eight-horn-shaped dendritic structure. The influence of the pH values for the reaction solution and precursors has been discussed in detail. On the basis of the experimental results, possible growth mechanisms of the CaF{sub 2} microcrystals were proposed.

OSTI ID:
22215642
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 12; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English