skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural transition in rare earth doped zirconium oxide: A positron annihilation study

Journal Article · · Materials Research Bulletin
 [1];  [2]; ; ;  [1]
  1. Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
  2. Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

Graphical abstract: New microstructural analysis and phase transition of rare earth doped mixed oxide compounds such as: Sm{sub 2−x}Dy{sub x}Zr{sub 2}O{sub 7} (where x = 0.0 ≤ x ≥ 2.0) that are potentially useful as solid oxide fuels, ionic conductors, optoelectronic materials and most importantly as radiation resistant host for high level rad-waste disposal, structural transition in the system is reported through positron annihilation spectroscopy as there is an indication in the X-ray diffraction analysis. Highlights: ► Zirconium oxide material doped with rare earth ions. ► The method of positron annihilation spectroscopy suggests a phase transition in the system. ► The crystal structure transformation from pure pyrochlore to defect fluorite type of structure is shown by X-ray diffraction results. -- Abstract: A series of compounds with the general composition Sm{sub 2−x}Dy{sub x}Zr{sub 2}O{sub 7} (where 0 ≤ x ≥ 2.0) were synthesized by chemical route and characterized by powder X-ray diffraction (XRD) analysis. The rare earth ion namely Sm{sup +3} in the compound was gradually replaced with another smaller and heavier ion, Dy{sup +3} of the 4f series, there by resulting in order–disorder structural transition, which has been studied by positron annihilation lifetime and Doppler broadening spectroscopy. This study reveals the subtle electronic micro environmental changes in the pyrochlore lattice (prevalent due to the oxygen vacancy in anti-site defect structure of the compound) toward its transformation to defect fluorite structure as found in Dy{sub 2}Zr{sub 2}O{sub 7}. A comparison of the changes perceived with PAS as compared to XRD analysis is critically assayed.

OSTI ID:
22215606
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 11; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English