skip to main content

Title: Extended forward sensitivity analysis of one-dimensional isothermal flow

Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)
Authors:
 [1] ;  [2]
  1. Texas A and M University, 3133 TAMU, College Station, TX 77843 (United States)
  2. Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)
Publication Date:
OSTI Identifier:
22212859
Resource Type:
Conference
Resource Relation:
Conference: M and C 2013: 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, ID (United States), 5-9 May 2013; Other Information: Country of input: France; 15 refs.; Related Information: In: Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013| 3016 p.
Publisher:
American Nuclear Society - ANS; La Grange Park (United States)
Research Org:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; BENCHMARKS; CONVERGENCE; ERRORS; FLUID FLOW; ISOTHERMS; MATHEMATICAL SOLUTIONS; ONE-DIMENSIONAL CALCULATIONS; SENSITIVITY ANALYSIS; SIMULATION; THERMAL HYDRAULICS; VERIFICATION