skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of sintering aid CuTa{sub 2}O{sub 6} on piezoelectric and dielectric properties of sodium potassium niobate ceramics

Journal Article · · Materials Research Bulletin
 [1];  [2];  [3];  [1]
  1. Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China)
  2. Department of Electronics Engineering and Computer Science, Tung-Fang Design University, Kaohsiung 82941, Taiwan, ROC (China)
  3. Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung County 824, Taiwan, ROC (China)

Graphical abstract: NKN ceramics with a sintering aid CuTa{sub 2}O{sub 6} (CT) doping increased the mechanical quality factor (Q{sub m}) and electromechanical coupling factor (k{sub p}). Highlights: Black-Right-Pointing-Pointer A new sintering aid CuTa{sub 2}O{sub 6} was developed to dope into NKN ceramics. Black-Right-Pointing-Pointer Dense NKN ceramics were obtained as CuTa{sub 2}O{sub 6} compound doping. Black-Right-Pointing-Pointer We find the soluble limit of CuTa{sub 2}O{sub 6} compound incorporated into NKN ceramics. Black-Right-Pointing-Pointer The maximum Q{sub m} and k{sub p} values were more than 1500 and 42%, respectively. Black-Right-Pointing-Pointer CuTa{sub 2}O{sub 6} compound is a better sintering aid compared with K{sub 5.3}Cu{sub 1.3}Ta{sub 10}O{sub 29}. -- Abstract: In this study, the effects of a sintering aid CuTa{sub 2}O{sub 6} (CT) on (Na{sub 0.5}K{sub 0.5})NbO{sub 3} (NKN) ceramics were investigated. The diffracted angles in XRD profiles decreased because the Nb-sites were replaced by Cu and Ta ions, causing the expansion of lattice volume. SEM images showed smaller grain sizes at a low concentration of CuTa{sub 2}O{sub 6}, and grain sizes increased as the concentration of CuTa{sub 2}O{sub 6} doping increased because of a liquid phase formed. When CuTa{sub 2}O{sub 6} dopants were doped into NKN ceramics, the T{sub O-T} and T{sub c} phase transitions decreased because the replacement of Ta{sup 5+} ions in the B-site. A high bulk density (4.595 g/cm{sup 3}) and electromechanical coupling factor (k{sub p}, k{sub t}) were enhanced when CT dopants were doped into NKN ceramics. Moreover, the mechanical quality factor (Q{sub m}) also increased from 67 to 1550. NKN ceramics with sintering aid CuTa{sub 2}O{sub 6} doping showed excellent piezoelectric properties: k{sub p}: 42.5%; k{sub t}: 49.1%; Q{sub m}: 1550; and d{sub 33}: 96 pC/N.

OSTI ID:
22212493
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 4; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English