skip to main content

SciTech ConnectSciTech Connect

Title: Bistability of self-modulation of the GaAs intrinsic stimulated picosecond radiation spectrum

The bistability of self-modulation of the spectrum of the stimulated picosecond radiation that appears during picosecond optical pumping of GaAs is detected. The radiation is measured before it reaches the end faces of a sample. One set of equidistant modes occurs in the radiation spectrum at the radiation pulse front. A set of modes located at the center between the initial modes replaces the first set in the descending radiation branch. The intermode interval inside each set coincides with the calculated interval between the eigenmodes of the GaAs layer, which is an active cavity. The radiation rise time turns out to be an oscillating function of the photon energy. The spectrum evolution is self-consistent so that the time-integrated spectrum and the spectrum-integrated radiation pulse envelope have a smooth (without local singularities) shape. The revealed bistability explains the physical nature of the two radiation-induced states of population depletion between which subterahertz self-oscillations in the radiation field were detected earlier. The radiation spectrum self-modulation is assumed to be a variant of stimulated Raman scattering.
Authors:
; ; ;  [1]
  1. Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)
Publication Date:
OSTI Identifier:
22210521
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 117; Journal Issue: 2; Other Information: Copyright (c) 2013 Pleiades Publishing, Ltd.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; GALLIUM ARSENIDES; LAYERS; MODULATION; OPTICAL PUMPING; PHOTONS; PULSE RISE TIME; PULSES; RAMAN EFFECT; SPECTRA