skip to main content

Title: Optical nutation in the exciton range of spectrum

Optical nutation in the exciton range of spectrum is studied in the mean field approximation taking into account exciton-photon and elastic exciton-exciton interactions. It is shown that the features of nutation development are determined by the initial exciton and photon densities, the resonance detuning, the nonlinearity parameter, and the initial phase difference. For nonzero initial exciton and photon concentrations, three regimes of temporal evolution of excitons and photons exist: periodic conversion of excitons to photons and vice versa, aperiodic conversion of photons to excitons, and the rest regime. In the rest regime, the initial exciton and photon densities are nonzero and do not change with time. The oscillation amplitudes and periods of particle densities determined by the system parameters are found. The exciton self-trapping and photon trapping appearing in the system at threshold values of the nonlinearity parameter were predicted. As this parameter increases, the oscillation amplitudes of the exciton and photon densities sharply change at the critical value of the nonlinearity parameter. These two phenomena are shown to be caused by the elastic exciton-exciton interaction, resulting in the dynamic concentration shift of the exciton level.
Authors:
 [1] ;  [2]
  1. Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of)
  2. Taras Shevchenko Transnistria State University (Moldova, Republic of)
Publication Date:
OSTI Identifier:
22210516
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 117; Journal Issue: 2; Other Information: Copyright (c) 2013 Pleiades Publishing, Ltd.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AMPLITUDES; APPROXIMATIONS; CONVERSION; DENSITY; EXCITONS; INTERACTIONS; MEAN-FIELD THEORY; NONLINEAR PROBLEMS; OSCILLATIONS; PERIODICITY; PHOTONS; SPECTRA; TRAPPING