skip to main content

Title: Equilibration of a one-dimensional quantum liquid

We review some of the recent results on equilibration of one-dimensional quantum liquids. The low-energy properties of these systems are described by the Luttinger liquid theory, in which the excitations are bosonic quasiparticles. At low temperatures, the relaxation of the gas of excitations toward full equilibrium is exponentially slow. In electronic Luttinger liquids, these relaxation processes involve backscattering of electrons and give rise to interesting corrections to the transport properties of one-dimensional conductors. We focus on the phenomenological theory of the equilibration of a quantum liquid and obtain an expression for the relaxation rate in terms of the excitation spectrum.
Authors:
 [1]
  1. Argonne National Laboratory Argonne, Materials Science Division (United States)
Publication Date:
OSTI Identifier:
22210471
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 117; Journal Issue: 3; Other Information: Copyright (c) 2013 Pleiades Publishing, Inc.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BACKSCATTERING; ELECTRONS; EQUILIBRIUM; EXCITATION; LIQUIDS; ONE-DIMENSIONAL CALCULATIONS; QUASI PARTICLES; RELAXATION; SPECTRA; TEMPERATURE RANGE 0065-0273 K; TRANSPORT THEORY