skip to main content

SciTech ConnectSciTech Connect

Title: Anomalous hydrodynamics of fractional quantum Hall states

We propose a comprehensive framework for quantum hydrodynamics of the fractional quantum Hall (FQH) states. We suggest that the electronic fluid in the FQH regime can be phenomenologically described by the quantized hydrodynamics of vortices in an incompressible rotating liquid. We demonstrate that such hydrodynamics captures all major features of FQH states, including the subtle effect of the Lorentz shear stress. We present a consistent quantization of the hydrodynamics of an incompressible fluid, providing a powerful framework to study the FQH effect and superfluids. We obtain the quantum hydrodynamics of the vortex flow by quantizing the Kirchhoff equations for vortex dynamics.
Authors:
 [1]
  1. University of Chicago, Department of Physics (United States)
Publication Date:
OSTI Identifier:
22210469
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 117; Journal Issue: 3; Other Information: Copyright (c) 2013 Pleiades Publishing, Inc.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CAPTURE; EQUATIONS; HYDRODYNAMICS; LIQUIDS; LORENTZ FORCE; QUANTIZATION; SUPERFLUIDITY; VORTEX FLOW; VORTICES