skip to main content

Title: Metastable-state formation as a possible mechanism for the conductance anomalies in mesoscopic structures

We study metastable-state formation in the one-dimensional model of a quantum ballistic contact, in which the contact is represented by a potential barrier with electron-electron interaction localized therein. It is shown that when the interaction parameter exceeds a critical value, a metastable state with spontaneous spin polarization of the barrier is formed. The difference between the grand potentials of the metastable and globally stable states tends to zero at the critical point; therefore, the metastable state manifests itself in transport even at low temperatures and its effect gradually increases with temperature. The main effect is a decrease in the conductance with increasing temperature, which occurs in a certain range of the barrier-region potential, similar to that observed during the formation of the well-known 0.7 conductance anomaly.
Authors:
 [1]
  1. Russian Academy of Sciences, Fryazino Branch, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)
Publication Date:
OSTI Identifier:
22210446
Resource Type:
Journal Article
Resource Relation:
Journal Name: Semiconductors; Journal Volume: 47; Journal Issue: 11; Other Information: Copyright (c) 2013 Pleiades Publishing, Ltd.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ELECTRON-ELECTRON COLLISIONS; ELECTRON-ELECTRON INTERACTIONS; METASTABLE STATES; SYNTHESIS