skip to main content

Title: Spectral-kinetic properties of heterostructures with GaAsSb/InGaAs/GaAs-based quantum wells emitting in the range of 1.0-1.2 {mu}m

The spectral-kinetic properties of heterostructures with GaAs/GaAsSb-based and GaAsSb/InGaAs/GaAs-based quantum wells, emitting in the range of 1.0-1.2 {mu}m are studied with picosecond and nanosecond temporal resolution. Intense photoluminescence in the GaAsSb/InGaAs/GaAs structure, as well as an increase in the photoluminescence wavelength by a factor of 2.5 and a shift of the location of the maximum of the peak ({approx}100 meV) to the longer-wavelength region were observed up to room temperature. It is established that as the molar fraction of Sb and the thickness of the InGaAs layer increase, the energy of the fundamental transition decreases by a factor of 140 meV compared with the GaAsSb/InGaAs/GaAs structure with a lower Sb content and a smaller thickness of the InGaAs layer. At 300 K, the emission wavelength of such a structure was 1.18 {mu}m. In addition, an increase in the thickness of the InGaAs layer led to an increase in the room-temperature photoluminescence intensity by a factor of 60, which is associated with a decrease in the energy of the fundamental state for electrons in the InGaAs layer and, consequently, to larger electron localization and smaller temperature quenching of photoluminescence.
Authors:
; ;  [1] ; ;  [2]
  1. Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
  2. Nizhni Novgorod State University, Physical-Technical Research Institute (Russian Federation)
Publication Date:
OSTI Identifier:
22210438
Resource Type:
Journal Article
Resource Relation:
Journal Name: Semiconductors; Journal Volume: 47; Journal Issue: 11; Other Information: Copyright (c) 2013 Pleiades Publishing, Ltd.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; GALLIUM ARSENIDES; INDIUM ARSENIDES; LAYERS; PHOTOLUMINESCENCE; QUANTUM WELLS; THICKNESS; WAVELENGTHS