skip to main content

Title: Prospects of biomolecule sequencing with the techniques of translocation through nanopores: A review

The interest in the functional properties of biomolecules in native solutions (in particular, their interaction with membranes) constantly increases with accumulation of data on the macromolecular structure, obtained by X-ray diffraction (with synchrotron radiation sources), nuclear magnetic resonance, and mass spectrometry; this interest is closely related to the development of new technologies of sequencing (i.e., determining the sequence of nucleotides in DNA biomolecule). One of the most promising 'physical' approaches to sequencing is the application of methods based on the use of nanochannels or nanopores, through which biomolecules pass in ionic solutions under an electric field applied. A nanopore provides spatial localization of molecules and makes it possible to detect a signal (electric, fluorescent, etc.) from an individual nucleotide. In view of the development of new high-intensity pulsed X-ray sources, the popularity of fluorescence analysis constantly increases. The existing methods for simulating the motion of biomolecules and interpreting their structure, sequencing techniques, and the prospects of further development of investigations in this field are discussed.
Authors:
;  [1]
  1. Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)
Publication Date:
OSTI Identifier:
22210427
Resource Type:
Journal Article
Resource Relation:
Journal Name: Crystallography Reports; Journal Volume: 58; Journal Issue: 6; Other Information: Copyright (c) 2013 Pleiades Publishing, Inc.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ELECTRIC FIELDS; FLUORESCENCE; INTERACTIONS; MASS SPECTROSCOPY; MEMBRANES; NANOSTRUCTURES; NUCLEAR MAGNETIC RESONANCE; NUCLEOTIDES; SYNCHROTRON RADIATION SOURCES; X-RAY DIFFRACTION; X-RAY SOURCES