skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The G protein-coupled receptor GPR30 mediates the proliferative and invasive effects induced by hydroxytamoxifen in endometrial cancer cells

Journal Article · · Biochemical and Biophysical Research Communications
; ;  [1];  [1];  [2]
  1. Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital of the China Welfare Institute Affiliated to Shanghai Jiao Tong University, 910, Hengshan Road, Shanghai (China)
  2. Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai (China)

Highlights: Black-Right-Pointing-Pointer We assessed hydroxytamoxifen (OHT) effects in two endometrial cancer cell lines. Black-Right-Pointing-Pointer GPR30 mediates the proliferative effects induced by OHT. Black-Right-Pointing-Pointer GPR30 mediates the invasive effects induced by OHT. Black-Right-Pointing-Pointer GPR30 expression was up-regulated by OHT in endometrial cancer cell line. -- Abstract: The selective ER modulator tamoxifen (TAM) is the most widely used ER antagonist for treatment of women with hormone-dependent breast tumor. However, long-term treatment is associated with an increased risk of endometrial cancer. The aim of the present study was to demonstrate new insight into the role of G-protein coupled receptor 30 (GPR30) in the activity of TAM, which promoted endometrial cancer. In endometrial cancer cell lines ISHIKAWA and KLE, the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, 17{beta}-estradiol (E2) and G1, a non-steroidal GPR30-specific agonist to promote cell proliferation and invasion was evaluated. All agents above induced high proliferative and invasive effects, while the down-regulation of GPR30 or the interruption of MAPK signal pathway partly or completely prevented the action of the regent. Moreover, the RNA and protein expression of GPR30 was up-regulated by G1, E2 or OHT in both cell lines. The present study provided a new insight into the mechanism involved in the agonistic activity exerted by TAM in the uterus.

OSTI ID:
22207797
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 420, Issue 2; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English