skip to main content

Title: Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling

Research highlights: {yields} Sprouty2-deficient mice exhibit cleft palate as a result of failure of palatal shelf elevation. {yields} We examined palate cell proliferation in Sprouty2-deficient mice. {yields} Palate mesenchymal cell proliferation was increased in Sprouty2 KO mice. {yields} Sprouty2 plays roles in murine palatogenesis by regulating cell proliferation. -- Abstract: Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, we report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGFmore » signaling and is involved in palatal shelf elevation.« less
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [3] ;  [1] ;  [4] ;  [5] ;  [1]
  1. Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)
  2. Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)
  3. Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)
  4. Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)
  5. (JST), CREST, Chiyoda-ku, Tokyo 102-0075 (Japan)
Publication Date:
OSTI Identifier:
22204772
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 404; Journal Issue: 4; Other Information: Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANIMAL TISSUES; CELL PROLIFERATION; FIBROBLASTS; GENES; GROWTH FACTORS; MICE; RNA; TISSUE CULTURES