skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling the photoluminescence of ZnO:Si nano-composite films by heat-treatment

Journal Article · · Materials Research Bulletin
;  [1]
  1. Department of Applied Sciences, Indira Gandhi Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi 110 006 (India)

Nano-composite thin films of silicon and zinc oxide were deposited on glass substrates using thermal co-evaporation. On heating the films at different temperatures and different atmospheric pressures, the photoluminescence (PL) emission spectra become broad, giving emissions in UV-Blue, Green and Red region. Analyses reveal that defect-dominated structure of ZnO contributes to the broad PL spectra observed. X-ray diffraction and Raman spectra analysis show that the defects caused by oxygen vacancies decrease with heating which is accompanied by a competing process of decrease in grain size made possible by surrounding silicon reacting at the surface of the ZnO nano-cluster grains giving new bonds, possibly O-Si-Zn bonds. Crystallinity of nano-grains and defects contribute different emission peaks that depending on relative contributions can give comparable peaks resulting in broad emission spectra. The study shows that simple post-deposition process can lead to fabrication of white light emitting devices based on these nano-composites. Best emission spectra are obtained by heating at a temperature of 250 {sup o}C in low vacuum.

OSTI ID:
22202822
Journal Information:
Materials Research Bulletin, Vol. 45, Issue 10; Other Information: Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English