skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE CONTRIBUTION OF THERMALLY-PULSING ASYMPTOTIC GIANT BRANCH AND RED SUPERGIANT STARS TO THE LUMINOSITIES OF THE MAGELLANIC CLOUDS AT 1-24 {mu}m

Journal Article · · Astrophysical Journal
 [1]
  1. Caltech Optical Observatories, Division of Physics, Mathematics and Astronomy, Mail Stop 301-17, California Institute of Technology, Pasadena, CA 91125 (United States)

We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at {approx}3-4 {mu}m, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at {approx}3-4 {mu}m and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 {mu}m, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1-4 {mu}m. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8-1 {mu}m). At longer wavelengths ({>=}8 {mu}m), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 {mu}m, TP-AGB and RSG contribute less than 4% of the 8 {mu}m flux. However, 19% of the SMC 8 {mu}m flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 {mu}m flux (e.g., observed-frame 24 {mu}m at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.

OSTI ID:
22167840
Journal Information:
Astrophysical Journal, Vol. 764, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English