skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonisothermal theory of the positive column of an electric discharge in the axial magnetic field

Journal Article · · Plasma Physics Reports

A nonisothermal model of the positive column allowing for electron energy balance is analyzed. The influence of the axial magnetic field on the characteristics of the cylindrical positive column of a low-pressure discharge is investigated in the hydrodynamic approximation. It is shown that the magnetic field affects the plasma density distribution, plasma velocity, and electron energies. The radial dependences of the plasma density, electron energy, and plasma velocity, as well as the azimuthal velocities of electrons and ions, are calculated for helium at different values of the magnetic field strength. It is established that inertia should be taken into account in the equations for the azimuthal motion of electrons and ions. The results obtained in the hydrodynamic approximation differ significantly from those obtained in the framework of the common diffusion model of the positive column in the axial magnetic field. It is shown that the distributions of the plasma density and radial plasma velocity in the greater part of the positive column tend to those obtained in the diffusion approximation at higher values of the axial magnetic field and gas density, although substantial differences remain in the near-wall region.

OSTI ID:
22156478
Journal Information:
Plasma Physics Reports, Vol. 39, Issue 1; Other Information: Copyright (c) 2013 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-780X
Country of Publication:
United States
Language:
English