skip to main content

Title: The new barium zinc mercurides Ba{sub 3}ZnHg{sub 10} and BaZn{sub 0.6}Hg{sub 3.4} - Synthesis, crystal and electronic structure

The title compounds Ba{sub 3}ZnHg{sub 10} and BaZn{sub 0.6}Hg{sub 3.4} were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba{sub 3}ZnHg{sub 10} (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 4{sup 4} Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl{sub 4}. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn{sub 0.6}Hg{sub 3.4} (cubic, cI320, space group I4{sup Macron }3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba{sub 3}ZnHg{sub 10}, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4 Multiplication-Sign 4 Multiplication-Sign 4 subcell relationmore » to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6){sub 4} with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4){sub 2} dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb{sub 3}Hg{sub 20} applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations relate the two title compounds. - Graphical abstract: Six of the 64 small sub-cubes of three types (A, B, C) forming the unit cell of the Hg-rich mercuride BaZn{sub 0.6}Hg{sub 3.4}. Highlights: Black-Right-Pointing-Pointer Two new Hg-rich Ba mercurides, both synthesized from the elements in pure phase. Black-Right-Pointing-Pointer BaZn{sub 0.6}HgG{sub 3.4} and Ba{sub 3}ZnHg{sub 10} with new complex structure types. Black-Right-Pointing-Pointer Structure relation to other complex cubic intermetallics. Black-Right-Pointing-Pointer Discussion of covalent and metallic bonding aspects, as found by the structure features and band structure calculations.« less
Authors:
;  [1] ;  [1]
  1. Institut fuer Anorganische und Analytische Chemie, University of Freiburg, Albertstr. 21, D-79104 Freiburg (Germany)
Publication Date:
OSTI Identifier:
22149964
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 196; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ATOMS; BARIUM; CHEMICAL COMPOSITION; CHEMICAL PREPARATION; COORDINATION NUMBER; CRUCIBLES; CUBIC LATTICES; ELECTRONIC STRUCTURE; INTERMETALLIC COMPOUNDS; MONOCRYSTALS; ORTHORHOMBIC LATTICES; SPACE GROUPS; X RADIATION; ZINC