skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

Journal Article · · Journal of Solid State Chemistry
 [1]; ; ; ;  [1];  [2]
  1. Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile)
  2. Faculty of Chemical and Pharmaceutical Science, University of Chile, S. Livingstone 1007, PO Box 233, Santiago (Chile)

Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite, was formed. Black-Right-Pointing-Pointer EDS confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces. Black-Right-Pointing-Pointer Fluorescent CaCO{sub 3} was produced by the inclusion of PMS into the CaCO{sub 3} matrix.

OSTI ID:
22149876
Journal Information:
Journal of Solid State Chemistry, Vol. 194; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English