skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical properties of Eu and Er doped LaAlO{sub 3} nanopowders prepared by low-temperature method

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]; ;  [2];  [1]
  1. Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw 2 (Poland)
  2. Cinvestav Unidad Saltillo, Apartado Postal 663, Saltillo, 25000 Coahuila (Mexico)

LaAlO{sub 3} nanoparticles doped with Eu{sup 3+} and Er{sup 3+} ions were synthesized at 500 Degree-Sign C in a two-step process by combining a mechanically induced metathesis reaction and molten salt synthesis. The obtained samples were characterized by XRD and TEM methods, which showed that the mean crystallite size is {approx}45 and {approx}57 nm, respectively. Furthermore, excitation and luminescence spectra as well as decay profiles were measured for the synthesized samples. These studies suggested that the Eu{sup 3+} ions are located at three different local sites without inversion symmetry. Our studies also showed up-conversion emission in the samples doped with Er{sup 3+} ions. The up-conversion mechanism has been discussed. - Graphical abstract: The example up-conversion spectra of 1% and 2% Er{sup 3+}-doped samples under 980 nm photoexcitation (a) and energy transfer scheme (b) in Er{sup 3+}-doped LaAlO{sub 3} nanopowders. Highlights: Black-Right-Pointing-Pointer Er and Eu doped LaAlO{sub 3} samples were synthesized at remarkably low temperatures. Black-Right-Pointing-Pointer The mean crystallite size of the obtained samples is 45-57 nm. Black-Right-Pointing-Pointer Luminescence and excitation spectra as well as decay profiles were measured. Black-Right-Pointing-Pointer Eu{sup 3+} ions are located at three different local sites without inversion symmetry. Black-Right-Pointing-Pointer We discuss mechanism of the up-conversion mechanism in Er{sup 3+} doped samples.

OSTI ID:
22149859
Journal Information:
Journal of Solid State Chemistry, Vol. 194; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English