skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE EXTENT OF MAGNETIC FIELDS AROUND GALAXIES OUT TO z {approx} 1

Journal Article · · Astrophysical Journal Letters

Radio quasar sightlines with strong Mg II absorption lines display statistically enhanced Faraday rotation measures (RMs), indicating the presence of additional magneto-active plasma with respect to sightlines free of such absorption. In this Letter, we use multi-color optical imaging to identify the galaxies likely hosting the magneto-active plasma, and to constrain the location of the latter with respect to the putative parent halo. We find that all of the sightlines with high |RM| pass within 50 kpc of a galaxy and that the |RM| distribution for low impact parameters, D < 50 kpc, is significantly different than for larger impact parameters. In addition, we find a decrease in the ratio of the polarization at 21 cm and 1.5 cm, p{sub 21}/p{sub 1.5}, toward lower D. These two effects are most likely related, strengthen the association of excess |RM| with intervening galaxies, and suggest that intervening galaxies operate as inhomogeneous Faraday screens. These results are difficult to reconcile with only a disk model for the magnetic field, but are consistent with highly magnetized winds associated with Mg II systems. We infer strong magnetic fields of a few tens of {mu}G, consistent with the values required by the lack of evolution of the FIR-radio correlation at high redshifts. Finally, these findings lend support to the idea that the small-scale helicity bottleneck of {alpha}-{Omega} galactic dynamos can be significantly alleviated via galactic winds.

OSTI ID:
22140321
Journal Information:
Astrophysical Journal Letters, Vol. 772, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English