skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. I. DISCOVERY OF KEPLER-76b: A HOT JUPITER WITH EVIDENCE FOR SUPERROTATION

Journal Article · · Astrophysical Journal
; ;  [1];  [2];  [3]
  1. School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)
  2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
  3. Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark)

We present the first case in which the BEER algorithm identified a hot Jupiter in the Kepler light curve, and its reality was confirmed by orbital solutions based on follow-up spectroscopy. The companion Kepler-76b was identified by the BEER algorithm, which detected the BEaming (sometimes called Doppler boosting) effect together with the Ellipsoidal and Reflection/emission modulations (BEER), at an orbital period of 1.54 days, suggesting a planetary companion orbiting the 13.3 mag F star. Further investigation revealed that this star appeared in the Kepler eclipsing binary catalog with estimated primary and secondary eclipse depths of 5 Multiplication-Sign 10{sup -3} and 1 Multiplication-Sign 10{sup -4}, respectively. Spectroscopic radial velocity follow-up observations with Tillinghast Reflector Echelle Spectrograph and SOPHIE confirmed Kepler-76b as a transiting 2.0 {+-} 0.26 M{sub Jup} hot Jupiter. The mass of a transiting planet can be estimated from either the beaming or the ellipsoidal amplitude. The ellipsoidal-based mass estimate of Kepler-76b is consistent with the spectroscopically measured mass while the beaming-based estimate is significantly inflated. We explain this apparent discrepancy as evidence for the superrotation phenomenon, which involves eastward displacement of the hottest atmospheric spot of a tidally locked planet by an equatorial superrotating jet stream. This phenomenon was previously observed only for HD 189733b in the infrared. We show that a phase shift of 10. Degree-Sign 3 {+-} 2. Degree-Sign 0 of the planet reflection/emission modulation, due to superrotation, explains the apparently inflated beaming modulation, resolving the ellipsoidal/beaming amplitude discrepancy. Kepler-76b is one of very few confirmed planets in the Kepler light curves that show BEER modulations and the first to show superrotation evidence in the Kepler band. Its discovery illustrates for the first time the ability of the BEER algorithm to detect short-period planets and brown dwarfs.

OSTI ID:
22140217
Journal Information:
Astrophysical Journal, Vol. 771, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English