skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA

Journal Article · · Astrophysical Journal
; ; ; ;  [1];  [2]
  1. Astronomy Department, University of Chicago, Chicago, IL 60637 (United States)
  2. Physics and Astronomy Department, Clemson University, Clemson, SC 29634 (United States)

A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

OSTI ID:
22140182
Journal Information:
Astrophysical Journal, Vol. 771, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English