skip to main content

SciTech ConnectSciTech Connect

Title: DIRECT IMAGING OF A COMPACT MOLECULAR OUTFLOW FROM A VERY LOW LUMINOSITY OBJECT: L1521F-IRS

Studying the physical conditions of very low luminosity objects (VeLLOs; L{sub bol} < 0.1 L{sub Sun }) is important for understanding the earliest evolutionary stage of protostars and brown dwarfs. We report interferometric observations of the VeLLO L1521F-IRS, in {sup 12}CO (2-1) line emission and the 1.3 mm continuum emission, using the Submillimeter Array. With the {sup 12}CO (2-1) high-resolution observations, we have spatially resolved a compact but poorly collimated molecular outflow associated with L1521F-IRS for the first time. The blueshifted and redshifted lobes are aligned along the east and west side of L1521F-IRS with a lobe size of Almost-Equal-To 1000 AU. The estimated outflow mass, maximum outflow velocity, and outflow force are (9.0-80) Multiplication-Sign 10{sup -4} M{sub Sun }, 7.2 km s{sup -1}, and (7.4-66) Multiplication-Sign 10{sup -7} M{sub Sun} km s{sup -1} yr{sup -1}, respectively. The estimated outflow parameters such as size, mass, and momentum rate are similar to values derived for other VeLLOs, and are located at the lower end of values compared to previously studied outflows associated with low- to high-mass star-forming regions. Low-velocity less collimated (1.5 km s{sup -1}/1200 AU) and higher-velocity compact (4.0 km s{sup -1}/920 AU) outflow components are suggested by the data.more » These velocity structures are not consistent with those expected in the jet-driven or wind-driven outflow models, perhaps suggesting a remnant outflow from the first hydrostatic core as well as an undeveloped outflow from the protostar. Detection of an infrared source and compact millimeter continuum emission suggests the presence of the protostar, while its low bolometric luminosity (0.034-0.07 L{sub Sun }) and small outflow suggests that L1521F is in the earliest protostellar stage (<10{sup 4} yr) and contains a substellar mass object. The bolometric (or internal) luminosity of L1521F-IRS suggests that the current mass accretion rate is an order of magnitude lower than expected in the standard mass accretion model ( Almost-Equal-To 10{sup -6} M{sub Sun} yr{sup -1}), which may imply that L1521F-IRS is currently in a low activity phase.« less
Authors:
 [1] ;  [2] ;  [3]
  1. Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile)
  2. Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)
  3. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
Publication Date:
OSTI Identifier:
22133978
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 774; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BOLOMETERS; EMISSION; GIANT STARS; IMAGES; LUMINOSITY; MOLECULES; PROTOSTARS; RED SHIFT; RESOLUTION; STELLAR WINDS