skip to main content

Title: DETERMINATION OF THE INTRINSIC LUMINOSITY TIME CORRELATION IN THE X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

Gamma-ray bursts (GRBs), which have been observed up to redshifts z Almost-Equal-To 9.5, can be good probes of the early universe and have the potential to test cosmological models. Dainotti's analysis of GRB Swift afterglow light curves with known redshifts and a definite X-ray plateau shows an anti-correlation between the rest-frame time when the plateau ends (the plateau end time) and the calculated luminosity at that time (or approximately an anti-correlation between plateau duration and luminosity). Here, we present an update of this correlation with a larger data sample of 101 GRBs with good light curves. Since some of this correlation could result from the redshift dependences of these intrinsic parameters, namely, their cosmological evolution, we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic and describe how we recover it and how this can be used to constrain physical models of the plateau emission, the origin of which is still unknown. The present result could help to clarify the debated nature of the plateau emission.
Authors:
; ; ;  [1]
  1. Department of Physics and Astronomy, Stanford University, Via Pueblo Mall 382, Stanford, CA 94305-4060 (United States)
Publication Date:
OSTI Identifier:
22133877
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 774; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; AFTERGLOW; CORRELATIONS; COSMIC GAMMA BURSTS; COSMOLOGICAL MODELS; EMISSION; GALACTIC EVOLUTION; LUMINOSITY; RED SHIFT; UNIVERSE; VISIBLE RADIATION; X RADIATION