skip to main content

SciTech ConnectSciTech Connect

Title: MAGNETOHYDRODYNAMIC SHOCK-CLUMP EVOLUTION WITH SELF-CONTAINED MAGNETIC FIELDS

We study the interaction of strong shock waves with magnetized clumps. Previous numerical work focused on a simplified scenario in which shocked clumps are immersed in a globally uniform magnetic field that extends through both the clump and the ambient medium. Here, we consider the complementary circumstance in which the field is completely self-contained within the clumps. This situation could arise naturally during clump formation via dynamical or thermal instabilities, for example, as a magnetic field pinches off from the ambient medium. Using our adaptive mesh refinement magnetohydrodynamics code AstroBEAR, we carry out a series of simulations with magnetized clumps that have different self-contained magnetic field configurations. We find that the clump and magnetic evolution are sensitive to the fraction of the magnetic field aligned with, or perpendicular to, the shock normal. The relative strength of magnetic pressure and tension in the different field configurations allows us to analytically understand the different cases of post-shock evolution. We also show how turbulence and the mixing it implies depends of the initial field configuration and suggest ways in which the observed shock-clump morphology may be used as a proxy for identifying internal field topologies a posteriori.
Authors:
; ;  [1]
  1. Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)
Publication Date:
OSTI Identifier:
22133853
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 774; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; GALACTIC EVOLUTION; MAGNETIC FIELD CONFIGURATIONS; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; MORPHOLOGY; SHOCK WAVES; SIMULATION; TOPOLOGY; TURBULENCE