skip to main content

Title: TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. IV. RELATIVISTICALLY BROADENED IRON LINES

According to the no-hair theorem, astrophysical black holes are fully characterized by their masses and spins and are described by the Kerr metric. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we calculate the profiles of fluorescent iron lines emitted from the accretion flows around black hole candidates within a framework that allows us to perform the calculation as a function of its mass and spin as well as of a free parameter that measures potential deviations from the Kerr metric. We show that such deviations lead to line profiles that are significantly altered and may exhibit a modified flux ratio of the two peaks in their characteristic double-peaked shape. We also show that the disk inclination can be measured independently of the spin and the deviation parameter at low to intermediate inclination angles, as in the case of Kerr black holes. We estimate the precision that near-future X-ray missions such as Astro-H and ATHENA+ are required to achieve in order to resolve deviations from the Kerr metric in iron line profiles and show that constraints on such deviations will be strongest for rapidly spinningmore » black holes. More generally, we show that measuring the line profile with a precision of {approx}5% at disk inclinations of 30 Degree-Sign or 60 Degree-Sign constrains the deviation parameter to order unity for values of the spin a {approx}> 0.5M.« less
Authors:
 [1] ;  [2]
  1. Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)
  2. Physics and Astronomy Departments, University of Arizona, 1118 East 4th Street, Tucson, AZ 85721 (United States)
Publication Date:
OSTI Identifier:
22131057
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 773; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; ACCURACY; ASTROPHYSICS; BLACK HOLES; FLUORESCENCE; INCLINATION; IRON; KERR METRIC; LIMITING VALUES; LINE BROADENING; MASS; RELATIVISTIC RANGE; SPACE-TIME; SPECTRA; SPIN; X RADIATION