skip to main content

Title: INTERSTELLAR H{sub 2}O MASERS FROM J SHOCKS

We present a model in which the 22 GHz H{sub 2}O masers observed in star-forming regions occur behind shocks propagating in dense regions (preshock density n{sub 0} {approx} 10{sup 6}-10{sup 8} cm{sup -3}). We focus on high-velocity (v{sub s} {approx}> 30 km s{sup -1}) dissociative J shocks in which the heat of H{sub 2} re-formation maintains a large column of {approx}300-400 K gas; at these temperatures the chemistry drives a considerable fraction of the oxygen not in CO to form H{sub 2}O. The H{sub 2}O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action. The observed brightness temperatures (generally {approx} 10{sup 11}-10{sup 14} K) are the result of coherent velocity regions that have dimensions in the shock plane that are 10-100 times the shock thickness of {approx}10{sup 13} cm. The masers are therefore beamed toward the observer, who typically views the shock ''edge-on'', or perpendicular to the shock velocity; the brightest masers are then observed with the lowest line-of-sight velocities with respect to the ambient gas. We present numerical and analytic studies of the dependence of the maser inversion, the resultant brightness temperature, the maser spot size andmore » shape, the isotropic luminosity, and the maser region magnetic field on the shock parameters and the coherence path length; the overall result is that in galactic H{sub 2}O 22 GHz masers, these observed parameters can be produced in J shocks with n{sub 0} {approx} 10{sup 6}-10{sup 8} cm{sup -3} and v{sub s} {approx} 30-200 km s{sup -1}. A number of key observables such as maser shape, brightness temperature, and global isotropic luminosity depend only on the particle flux into the shock, j = n{sub 0} v{sub s} , rather than on n{sub 0} and v{sub s} separately.« less
Authors:
 [1] ;  [2] ;  [3]
  1. SETI Institute, Mountain View, CA 94043 (United States)
  2. University of Kentucky, Lexington, KY 40506 (United States)
  3. University of California, Berkeley, CA 94720 (United States)
Publication Date:
OSTI Identifier:
22131045
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 773; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BRIGHTNESS; CARBON MONOXIDE; DENSITY; GHZ RANGE; HYDROGEN; LUMINOSITY; MAGNETIC FIELDS; MASERS; OXYGEN; SHOCK WAVES; STARS; THICKNESS; WATER