skip to main content

Title: RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale ofmore » the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.« less
Authors:
; ;  [1] ;  [2]
  1. Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
  2. Department of Physics, Montana State University, Bozeman, MT 59718 (United States)
Publication Date:
OSTI Identifier:
22130957
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 773; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; DISTURBANCES; EXCITATION; GENERAL RELATIVITY THEORY; HAMILTONIANS; ORBITS; OSCILLATIONS; PHASE SPACE; PRECESSION; THREE-BODY PROBLEM