skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanism behind self-sustained oscillations in direct current glow discharges and dusty plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4802932· OSTI ID:22130494
 [1]
  1. Devices R and D Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Mt. 14-1 Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of)

An alternative explanation to the mechanism behind self-sustained oscillations of ions in direct current (DC) glow discharges is provided. Such description is distinguished from the one provided by the fluid models, where oscillations are attributed to the positive feedback mechanism associated with photoionization of particles and photoemission of electrons from the cathode. Here, oscillations arise as consequence of interaction between an ion and the surface charges induced by it at the bounding electrodes. Such mechanism provides an elegant explanation to why self-sustained oscillations occur only in the negative resistance region of the voltage-current characteristic curve in the DC glow discharges. Furthermore, this alternative description provides an elegant explanation to the formation of plasma fireballs in the laboratory plasma. It has been found that oscillation frequencies increase with ion's surface charge density, but at the rate which is significantly slower than it does with the electric field. The presented mechanism also describes self-sustained oscillations of ions in dusty plasmas, which demonstrates that self-sustained oscillations in dusty plasmas and DC glow discharges involve common physical processes.

OSTI ID:
22130494
Journal Information:
Physics of Plasmas, Vol. 20, Issue 4; Other Information: (c) 2013 Copyright-Sign 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English