skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced p-type conduction of B-doped nanocrystalline diamond films by high temperature annealing

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4813134· OSTI ID:22122801
;  [1]
  1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China)

We report the enhanced p-type conduction with Hall mobility of 53.3 cm{sup 2} V{sup -1} s{sup -1} in B-doped nanocrystalline diamond (NCD) films by 1000 Degree-Sign C annealing. High resolution transmission electronic microscopy, uv, and visible Raman spectroscopy measurements show that a part of amorphous carbon grain boundaries (GBs) transforms to diamond phase, which increases the opportunity of boron atoms located at the GBs to enter into the nano-diamond grains. This phase transition doping is confirmed by the secondary ion mass spectrum depth profile results that the concentration of B atoms in nano-diamond grains increases after 1000 Degree-Sign C annealing. It is also observed that 1000 Degree-Sign C annealing improves the lattice perfection, reduces the internal stress, decreases the amount of trans-polyacetylene, and increases the number or size of aromatic rings in the sp{sup 2}-bonded carbon cluster in B-doped NCD films. These give the contributions to improve the electrical properties of 1000 Degree-Sign C annealed B-doped NCD films.

OSTI ID:
22122801
Journal Information:
Journal of Applied Physics, Vol. 114, Issue 2; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English