skip to main content

SciTech ConnectSciTech Connect

Title: RESOLVED NEAR-INFRARED SPECTROSCOPY OF WISE J104915.57-531906.1AB: A FLUX-REVERSAL BINARY AT THE L DWARF/T DWARF TRANSITION

We report resolved near-infrared spectroscopy and photometry of the recently identified brown dwarf binary WISE J104915.57-531906.1AB, located 2.02 {+-} 0.15 pc from the Sun. Low-resolution spectral data from Magellan/FIRE and IRTF/SpeX reveal strong H{sub 2}O and CO absorption features in the spectra of both components, while the secondary also exhibits weak CH{sub 4} absorption at 1.6 {mu}m and 2.2 {mu}m. Spectral indices and comparison to low-resolution spectral standards indicate component types of L7.5 and T0.5 {+-} 1, the former consistent with the optical classification of the primary. Both sources also have unusually red spectral energy distributions for their spectral types, which we attribute to enhanced condensate opacity (thick clouds). Relative photometry reveals a flux reversal between the J and K bands, with the T dwarf component being brighter in the 0.95-1.3 {mu}m region ({Delta}J = -0.31 {+-} 0.05). As with other L/T transition binaries, this reversal likely reflects the depletion of condensate opacity in the T dwarf, with the contrast enhanced by the thick clouds present in the photosphere of the L dwarf primary. The 1 {mu}m flux from the T dwarf most likely emerges from gaps in its cloud layer, as suggested by the significant optical variability detected frommore » this source by Gillon et al. Component mass measurements of the WISE J1049-5319AB system through astrometric and component radial velocity monitoring may resolve the current debate as to whether the loss of photospheric condensate clouds at the L dwarf/T dwarf boundary is a slow or rapid process, a conceivable endeavor given its proximity, brightness, small separation (3.1 {+-} 0.3 AU), and reasonable orbital period (20-30 yr)« less
Authors:
 [1] ;  [2] ;  [3]
  1. Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States)
  2. Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington, DC 20015 (United States)
  3. Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)
Publication Date:
OSTI Identifier:
22121781
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 772; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION SPECTROSCOPY; BRIGHTNESS; CARBON MONOXIDE; CONDENSATES; ENERGY SPECTRA; INFRARED SPECTRA; MAGELLANIC CLOUDS; MASS; METHANE; PHOTOSPHERE; RADIAL VELOCITY; RESOLUTION; SUN; WATER