skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New framework hydrous silicate K{sub 3}Sc[Si{sub 3}O{sub 9}] {center_dot} H{sub 2}O related to the high-temperature anhydrous silicate K{sub 3}Ho[Si{sub 3}O{sub 9}] and symmetry analysis of a phase transition with prediction of structures

Journal Article · · Crystallography Reports
;  [1]
  1. Moscow State University, Faculty of Geology (Russian Federation)

Crystals of a new framework silicate K{sub 3}Sc[Si{sub 3}O{sub 9}] {center_dot} H{sub 2}O, space group Pm2{sub 1}n (nonstandard setting of space group Pmn2{sub 1} = C{sub 2v}{sup 7}), are obtained under hydrothermal conditions. The structure is determined without preliminary knowledge of the chemical formula. The absolute configuration is determined. The structure is close to that of the high-temperature K{sub 3}Ho[Si{sub 3}O{sub 9}] phase, which was obtained upon the heating of K{sub 3}HoSi{sub 3}O{sub 8}(OH){sub 2}. This structural similarity is due to the specific conditions of synthesis and an analogous formula, where holmium is replaced by scandium. A symmetry analysis shows that the high local symmetry of a block (rod) is responsible for the first-order phase transition of both the order-disorder (OD) and displacement type. The number of structures in which the simplest and high-symmetry layers are multiplied by different symmetry elements are predicted.

OSTI ID:
22121691
Journal Information:
Crystallography Reports, Vol. 58, Issue 4; Other Information: Copyright (c) 2013 Pleiades Publishing, Ltd.; http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7745
Country of Publication:
United States
Language:
English