skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4812924· OSTI ID:22121666
; ; ;  [1]
  1. Inter University Accelerator Centre, Aruna Asaf Ali Marg, Post box-10502, New Delhi-110067 (India)

Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

OSTI ID:
22121666
Journal Information:
AIP Conference Proceedings, Vol. 1530, Issue 1; Conference: ION BEAMS '12: International conference on multidisciplinary applications of nuclear physics with ion beams, Legnaro, Padova (Italy), 6-8 Jun 2012; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English