skip to main content

SciTech ConnectSciTech Connect

Title: FusionArc optimization: A hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy

Purpose: To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT.Methods: A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT/hybrid beams.Results: The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achievedmore » superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%-43.7% fewer MU/Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost-32.9%-55.2% compared to single-arc VMAT-the decrease in MU/Gy compared to IMRT was noticeably smaller at 12.2%-18.5%, when compared to IMRT.Conclusions: A hybrid VMAT/IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom. This optimization method will allow patients to be simultaneously planned for dosimetric quality and delivery efficiency without switching between delivery techniques. Example phantom and clinical cases suggest that the conversion of only three VMAT segments to modulated beams may result in a good combination of quality and efficiency.« less
Authors:
; ;  [1] ;  [2] ; ;  [3] ;  [4]
  1. Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States)
  2. Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 and Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)
  3. Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)
  4. Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 (United States)
Publication Date:
OSTI Identifier:
22121616
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 40; Journal Issue: 7; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 61 RADIATION PROTECTION AND DOSIMETRY; BEAMS; COMPARATIVE EVALUATIONS; DEGREES OF FREEDOM; DOSIMETRY; EFFICIENCY; MODULATION; OPTIMIZATION; PATIENTS; PHANTOMS; PLANNING; RADIOTHERAPY